Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 194
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732102

Cytochrome P450 CYP121A1 is a well-known drug target against Mycobacterium tuberculosis, the human pathogen that causes the deadly disease tuberculosis (TB). CYP121A1 is a unique P450 enzyme because it uses classical and non-classical P450 catalytic processes and has distinct structural features among P450s. However, a detailed investigation of CYP121A1 protein structures in terms of active site cavity dynamics and key amino acids interacting with bound ligands has yet to be undertaken. To address this research knowledge gap, 53 CYP121A1 crystal structures were investigated in this study. Critical amino acids required for CYP121A1's overall activity were identified and highlighted this enzyme's rigid architecture and substrate selectivity. The CYP121A1-fluconazole crystal structure revealed a novel azole drug-P450 binding mode in which azole heme coordination was facilitated by a water molecule. Fragment-based inhibitor approaches revealed that CYP121A1 can be inhibited by molecules that block the substrate channel or by directly interacting with the P450 heme. This study serves as a reference for the precise understanding of CYP121A1 interactions with different ligands and the structure-function analysis of P450 enzymes in general. Our findings provide critical information for the synthesis of more specific CYP121A1 inhibitors and their development as novel anti-TB drugs.


Cytochrome P-450 Enzyme System , Mycobacterium tuberculosis , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/drug effects , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/chemistry , Structure-Activity Relationship , Catalytic Domain , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/antagonists & inhibitors , Crystallography, X-Ray , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme Inhibitors/chemistry , Models, Molecular , Humans , Protein Binding , Substrate Specificity , Ligands , Protein Conformation
2.
J Med Chem ; 67(8): 6238-6252, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38598688

Thirty-one novel albaconazole derivatives were designed and synthesized based on our previous work. All compounds exhibited potent in vitro antifungal activities against seven pathogenic fungi. Among them, tetrazole compound D2 was the most potent antifungal with MIC values of <0.008, <0.008, and 2 µg/mL against Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus, respectively, the three most common and critical priority pathogenic fungi. In addition, compound D2 also exhibited potent activity against fluconazole-resistant C. auris isolates. Notably, compound D2 showed a lower inhibitory activity in vitro against human CYP450 enzymes as well as a lower inhibitory effect on the hERG K+ channel, indicating a low risk of drug-drug interactions and QT prolongation. Moreover, with improved pharmacokinetic profiles, compound D2 showed better in vivo efficacy than albaconazole at reducing fungal burden and extending the survival of C. albicans-infected mice. Taken together, compound D2 will be further investigated as a promising candidate.


Antifungal Agents , Candida albicans , Cryptococcus neoformans , Microbial Sensitivity Tests , Tetrazoles , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antifungal Agents/therapeutic use , Tetrazoles/pharmacology , Tetrazoles/chemistry , Tetrazoles/chemical synthesis , Tetrazoles/pharmacokinetics , Tetrazoles/therapeutic use , Animals , Humans , Candida albicans/drug effects , Mice , Cryptococcus neoformans/drug effects , Structure-Activity Relationship , Aspergillus fumigatus/drug effects , Drug Discovery , Drug Resistance, Fungal/drug effects , Candidiasis/drug therapy , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme Inhibitors/chemical synthesis , Cytochrome P-450 Enzyme Inhibitors/chemistry , Cytochrome P-450 Enzyme System/metabolism
3.
Biomolecules ; 14(4)2024 Apr 04.
Article En | MEDLINE | ID: mdl-38672458

While cytochrome P450 (CYP; P450) enzymes are commonly associated with the metabolism of organic xenobiotics and drugs or the biosynthesis of organic signaling molecules, they are also impacted by a variety of inorganic species. Metallic nanoparticles, clusters, ions, and complexes can alter CYP expression, modify enzyme interactions with reductase partners, and serve as direct inhibitors. This commonly overlooked topic is reviewed here, with an emphasis on understanding the structural and physiochemical basis for these interactions. Intriguingly, while both organometallic and coordination compounds can act as potent CYP inhibitors, there is little evidence for the metabolism of inorganic compounds by CYPs, suggesting a potential alternative approach to evading issues associated with rapid modification and elimination of medically useful compounds.


Cytochrome P-450 Enzyme Inhibitors , Cytochrome P-450 Enzyme System , Cytochrome P-450 Enzyme System/metabolism , Humans , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme Inhibitors/chemistry , Metal Nanoparticles/chemistry , Animals , Metals/chemistry , Metals/metabolism , Inorganic Chemicals/chemistry
4.
Molecules ; 28(20)2023 Oct 20.
Article En | MEDLINE | ID: mdl-37894672

Lekethromycin (LKMS) is a synthetic macrolide compound derivative intended for use as a veterinary medicine. Since there have been no in vitro studies evaluating its potential for drug-drug interactions related to cytochrome P450 (CYP450) enzymes, the effect of the inhibitory mechanisms of LKMS on CYP450 enzymes is still unclear. Thus, this study aimed to evaluate the inhibitory effects of LKMS on dog CYP450 enzymes. A cocktail approach using ultra-performance liquid chromatography-tandem mass spectrometry was conducted to investigate the inhibitory effect of LKMS on canine CYP450 enzymes. Typical probe substrates of phenacetin, coumarin, bupropion, tolbutamide, dextromethorphan, chlorzoxazone, and testosterone were used for CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2D6, CYP2E1, and CYP3A4, respectively. This study showed that LKMS might not be a time-dependent inhibitor. LKMS inhibited CYP2A6, CYP2B6, and CYP2D6 via mixed inhibition. LKMS exhibited mixed-type inhibition against the activity of CYP2A6 with an inhibition constant (Ki) value of 135.6 µΜ. LKMS inhibited CYP2B6 in a mixed way, with Ki values of 59.44 µM. A phenotyping study based on an inhibition assay indicated that CYP2D6 contributes to the biotransformation of LKMS. A mixed inhibition of CYP2D6 with Ki values of 64.87 µM was also observed. Given that this study was performed in vitro, further in vivo studies should be conducted to identify the interaction between LKMS and canine CYP450 enzymes to provide data support for the clinical application of LKMS and the avoidance of adverse interactions between other drugs.


Cytochrome P-450 CYP2D6 , Tandem Mass Spectrometry , Dogs , Animals , Chromatography, Liquid , Cytochrome P-450 CYP2B6/metabolism , Cytochrome P-450 CYP2D6/metabolism , Cytochrome P-450 CYP2D6/pharmacology , Microsomes, Liver/metabolism , Cytochrome P-450 Enzyme Inhibitors/chemistry , Cytochrome P-450 Enzyme System/metabolism , Liver/metabolism
5.
Comput Biol Med ; 150: 106177, 2022 11.
Article En | MEDLINE | ID: mdl-36242811

Undesirable drug-drug interactions (DDIs) may lead to serious adverse side effects when more than two drugs are administered to a patient simultaneously. One of the most common DDIs is caused by unexpected inhibition of a specific human cytochrome P450 (CYP450), which plays a dominant role in the metabolism of the co-administered drugs. Therefore, a unified and reliable method for predicting the potential inhibitors of CYP450 family is extremely important in drug development. In this work, graph convolutional neural network (GCN) with attention mechanism and 1-D convolutional neural network (CNN) were used to extract the features of CYP ligands and the binding sites of CYP450 respectively, which were then combined to establish a unified GCN-CNN (GCNN) model for predicting the inhibitors of 5 dominant CYP isoforms, i.e., 1A2, 2C9, 2C19, 2D6, and 3A4. Overall, the established GCNN model showed good performances on the test samples and achieved better performances than the recently proposed iCYP-MFE model by using the same datasets. Based on the heat-map analysis of the resulting molecular graphs, the key structural determinants of the CYP inhibitors were further explored.


Cytochrome P-450 Enzyme Inhibitors , Cytochrome P-450 Enzyme System , Humans , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme Inhibitors/chemistry , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Neural Networks, Computer
6.
Mar Drugs ; 20(2)2022 Jan 21.
Article En | MEDLINE | ID: mdl-35200623

Aeruginosamides (AEGs) are classified as cyanobactins, ribosomally synthesized peptides with post-translational modifications. They have been identified in cyanobacteria of genera Microcystis, Oscillatoria, and Limnoraphis. In this work, the new data on the in vitro activities of three AEG variants, AEG A, AEG625 and AEG657, and their interactions with metabolic enzymes are reported. Two aeruginosamides, AEG625 and AEG657, decreased the viability of human breast cancer cell line T47D, but neither of the peptides was active against human liver cancer cell line Huh7. AEGs also did not change the expression of MIR92b-3p, but for AEG625, the induction of oxidative stress was observed. In the presence of a liver S9 fraction containing microsomal and cytosolic enzymes, AEG625 and AEG657 showed high stability. In the same assays, quick removal of AEG A was recorded. The peptides had mild activity against three cytochrome P450 enzymes, CYP2C9, CYP2D6 and CYP3A4, but only at the highest concentration used in the study (60 µM). The properties of AEGs, i.e., cytotoxic activity and in vitro interactions with important metabolic enzymes, form a good basis for further studies on their pharmacological potential.


Antineoplastic Agents/pharmacology , Cyanobacteria/metabolism , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Peptides, Cyclic/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cytochrome P-450 Enzyme Inhibitors/chemistry , Cytochrome P-450 Enzyme Inhibitors/isolation & purification , Humans , Liver Neoplasms/drug therapy , Oxidative Stress/drug effects , Peptides, Cyclic/chemistry , Peptides, Cyclic/isolation & purification
7.
Bioorg Med Chem Lett ; 59: 128570, 2022 03 01.
Article En | MEDLINE | ID: mdl-35063631

Several diaryl triazene derivatives were synthesized and tested for their ability to inhibit cytochrome P450 1A1 and 1B1 as a potential means to prevent and treat cancer. These compounds are more planar than their conformational flexible aryl morpholino triazene counterparts that were previously shown to inhibit the above enzymes. As a result, the diaryl triazenes are more likely to exhibit increased binding to the enzyme active sites and inhibit these enzymes more strongly than the aryl morpholino triazenes. The data indicates that the diaryl triazenes inhibit cytochrome P450 1A1 and 1B1 one to two orders of magnitude more strongly than the aryl morpholino triazenes. Furthermore, compounds 8-10 strongly inhibited cytochrome P450 1B1 with IC50 values of 51 nM, 740 nM, and 590 nM respectively. Thus, diaryl triazenes should be further investigated as a potential chemopreventive agent.


Cytochrome P-450 CYP1A1/antagonists & inhibitors , Cytochrome P-450 CYP1B1/antagonists & inhibitors , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Morpholinos/pharmacology , Triazenes/pharmacology , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1B1/metabolism , Cytochrome P-450 Enzyme Inhibitors/chemical synthesis , Cytochrome P-450 Enzyme Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Structure , Morpholinos/chemical synthesis , Morpholinos/chemistry , Structure-Activity Relationship , Triazenes/chemical synthesis , Triazenes/chemistry
8.
J Inorg Biochem ; 229: 111722, 2022 04.
Article En | MEDLINE | ID: mdl-35078036

Anthracycline chemotherapeutics are highly effective, but their clinical usefulness is hampered by adverse side effects such as cardiotoxicity. Cytochrome P450 2J2 (CYP2J2) is a cytochrome P450 epoxygenase in human cardiomyocytes that converts arachidonic acid (AA) to cardioprotective epoxyeicosatrienoic acid (EET) regioisomers. Herein, we performed biochemical studies to understand the interaction of anthracycline derivatives (daunorubicin, doxorubicin, epirubicin, idarubicin, 5-iminodaunorubicin, zorubicin, valrubicin, and aclarubicin) with CYP2J2. We utilized fluorescence polarization (FP) to assess whether anthracyclines bind to CYP2J2. We found that aclarubicin bound the strongest to CYP2J2 despite it having large bulky groups. We determined that ebastine competitively inhibits anthracycline binding, suggesting that ebastine and anthracyclines may share the same binding site. Molecular dynamics and ensemble docking revealed electrostatic interactions between the anthracyclines and CYP2J2, contributing to binding stability. In particular, the glycosamine groups in anthracyclines are stabilized by binding to glutamate and aspartate residues in CYP2J2 forming salt bridge interactions. Furthermore, we used iterative ensemble docking schemes to gauge anthracycline influence on EET regioisomer production and anthracycline inhibition on AA metabolism. This was followed by experimental validation of CYP2J2-mediated metabolism of anthracycline derivatives using liquid chromatography tandem mass spectrometry fragmentation analysis and inhibition of CYP2J2-mediated AA metabolism by these derivatives. Taken together, we use both experimental and theoretical methodologies to unveil the interactions of anthracycline derivatives with CYP2J2. These studies will help identify alternative mechanisms of how anthracycline cardiotoxicity may be mediated through the inhibition of cardiac P450, which will aid in the design of new anthracycline derivatives with lower toxicity.


Anthracyclines/metabolism , Cytochrome P-450 CYP2J2/antagonists & inhibitors , Cytochrome P-450 CYP2J2/metabolism , Cytochrome P-450 Enzyme Inhibitors/metabolism , Anthracyclines/chemistry , Arachidonic Acid/metabolism , Cytochrome P-450 CYP2J2/chemistry , Cytochrome P-450 Enzyme Inhibitors/chemistry , Humans , Molecular Dynamics Simulation , Myocytes, Cardiac/enzymology , Protein Binding , Static Electricity
9.
PLoS Comput Biol ; 18(1): e1009820, 2022 01.
Article En | MEDLINE | ID: mdl-35081108

Cytochrome P450 2C9 (CYP2C9) is a major drug-metabolizing enzyme that represents 20% of the hepatic CYPs and is responsible for the metabolism of 15% of drugs. A general concern in drug discovery is to avoid the inhibition of CYP leading to toxic drug accumulation and adverse drug-drug interactions. However, the prediction of CYP inhibition remains challenging due to its complexity. We developed an original machine learning approach for the prediction of drug-like molecules inhibiting CYP2C9. We created new predictive models by integrating CYP2C9 protein structure and dynamics knowledge, an original selection of physicochemical properties of CYP2C9 inhibitors, and machine learning modeling. We tested the machine learning models on publicly available data and demonstrated that our models successfully predicted CYP2C9 inhibitors with an accuracy, sensitivity and specificity of approximately 80%. We experimentally validated the developed approach and provided the first identification of the drugs vatalanib, piriqualone, ticagrelor and cloperidone as strong inhibitors of CYP2C9 with IC values <18 µM and sertindole, asapiprant, duvelisib and dasatinib as moderate inhibitors with IC50 values between 40 and 85 µM. Vatalanib was identified as the strongest inhibitor with an IC50 value of 0.067 µM. Metabolism assays allowed the characterization of specific metabolites of abemaciclib, cloperidone, vatalanib and tarafenacin produced by CYP2C9. The obtained results demonstrate that such a strategy could improve the prediction of drug-drug interactions in clinical practice and could be utilized to prioritize drug candidates in drug discovery pipelines.


Computational Biology/methods , Cytochrome P-450 CYP2C9 , Cytochrome P-450 Enzyme Inhibitors , Machine Learning , Cytochrome P-450 CYP2C9/chemistry , Cytochrome P-450 CYP2C9/metabolism , Cytochrome P-450 Enzyme Inhibitors/analysis , Cytochrome P-450 Enzyme Inhibitors/chemistry , Cytochrome P-450 Enzyme Inhibitors/metabolism , Drug Interactions , Humans
10.
Chem Res Toxicol ; 34(12): 2534-2539, 2021 12 20.
Article En | MEDLINE | ID: mdl-34788025

Methimazole (MMI) is a widely used antithyroid drug, but it can cause hepatotoxicity by unknown mechanisms. Previous studies showed that the hepatic metabolism of MMI produces N-methylthiourea, leading to liver damage. However, the specific enzyme responsible for the production of the toxic metabolite N-methylthiourea is still unclear. In this study, we screened cytochromes P450 (CYPs) in N-methylthiourea production from MMI. CYP2A6 was identified as the key enzyme in catalyzing MMI metabolism to produce N-methylthiourea. When mice were pretreated with a CYP2A6 inhibitor, formation of N-methylthiourea from MMI was remarkably reduced. Consistently, the CYP2A6 inhibitor prevented MMI-induced hepatotoxicity. These results demonstrated that CYP2A6 is essential in MMI bioactivation and hepatotoxicity.


Cytochrome P-450 CYP2A6/metabolism , Liver/drug effects , Methimazole/adverse effects , Thiourea/analogs & derivatives , Animals , Cytochrome P-450 CYP2A6/antagonists & inhibitors , Cytochrome P-450 Enzyme Inhibitors/chemistry , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Humans , Liver/metabolism , Liver/pathology , Male , Methimazole/chemistry , Methimazole/metabolism , Mice , Molecular Structure , Recombinant Proteins/metabolism , Thiourea/chemistry , Thiourea/metabolism , Tranylcypromine/chemistry , Tranylcypromine/pharmacology
11.
Bioorg Med Chem ; 46: 116388, 2021 09 15.
Article En | MEDLINE | ID: mdl-34488021

The vast majority of approved drugs are metabolized by the five major cytochrome P450 (CYP) isozymes, 1A2, 2C9, 2C19, 2D6 and 3A4. Inhibition of CYP isozymes can cause drug-drug interactions with severe pharmacological and toxicological consequences. Computational methods for the fast and reliable prediction of the inhibition of CYP isozymes by small molecules are therefore of high interest and relevance to pharmaceutical companies and a host of other industries, including the cosmetics and agrochemical industries. Today, a large number of machine learning models for predicting the inhibition of the major CYP isozymes by small molecules are available. With this work we aim to go beyond the coverage of existing models, by combining data from several major public and proprietary sources. More specifically, we used up to 18815 compounds with measured bioactivities to train random forest classification models for the individual CYP isozymes. A major advantage of the new data collection over existing ones is the better representation of the minority class, the CYP inhibitors. With the new data collection we achieved inhibitor-to-non-inhibitor ratios in the order of 1:1 (CYP1A2) to 1:3 (CYP2D6). We show that our models reach competitive performance on external data, with Matthews correlation coefficients (MCCs) ranging from 0.62 (CYP2C19) to 0.70 (CYP2D6), and areas under the receiver operating characteristic curve (AUCs) between 0.89 (CYP2C19) and 0.92 (CYPs 2D6 and 3A4). Importantly, the models show a high level of robustness, reflected in a good predictivity also for compounds that are structurally dissimilar to the compounds represented in the training data. The best models presented in this work are freely accessible for academic research via a web service.


Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Machine Learning , Cytochrome P-450 Enzyme Inhibitors/chemical synthesis , Cytochrome P-450 Enzyme Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Structure-Activity Relationship
12.
Future Med Chem ; 13(19): 1639-1654, 2021 10.
Article En | MEDLINE | ID: mdl-34528444

Background: Accurate prediction of absorption, distribution, metabolism and excretion (ADME) properties can facilitate the identification of promising drug candidates. Methodology & Results: The authors present the Janssen generic Target Product Profile (gTPP) model, which predicts 18 early ADME properties, employs a graph convolutional neural network algorithm and was trained on between 1000-10,000 internal data points per predicted parameter. gTPP demonstrated stronger predictive power than pretrained commercial ADME models and automatic model builders. Through a novel logging method, the authors report gTPP usage for more than 200 Janssen drug discovery scientists. Conclusion: The investigators successfully enabled the rapid and systematic implementation of predictive ML tools across a drug discovery pipeline in all therapeutic areas. This experience provides useful guidance for other large-scale AI/ML deployment efforts.


Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Drug Development , Cytochrome P-450 Enzyme Inhibitors/chemistry , Humans , Models, Molecular
13.
Toxicol Lett ; 351: 1-9, 2021 Oct 15.
Article En | MEDLINE | ID: mdl-34407455

Tebuconazole (TEB) is a chiral triazole fungicide worldwide employed to control plant pathogens and preserve wood. People can be exposed to TEB either through diet and occupational contamination. This work investigates the in vitro inhibitory potential of rac-TEB, S-(+)-TEB, and R-(-)-TEB over the main cytochrome P450 enzymes (CYP450) using human liver microsomes to predict TEB in vivo inhibition potential. The IC50 values showed that in vitro inhibition was enantioselective for CYP2C9, CYP2C19, and CYP2D6, but not for CYP3A4/5. Despite enantioselectivity, rac-TEB and its single enantiomers were always classified in the same category. The inhibition mechanisms and constants were determined for rac-TEB and it has shown to be a mixed inhibitor of CYP3A4/5 (Ki = 1.3 ± 0.3 µM, αKi = 3.2 ± 0.5 µM; Ki = 0.6 ± 0.3 µM, αKi = 1.3 ± 0.3 µM) and CYP2C9 (Ki = 0.7 ± 0.1 µM, αKi = 2.7 ± 0.5 µM), and a competitive inhibitor of CYP2D6 (Ki = 11.9 ± 0.7 µM) and CYP2C19 (Ki = 0.23 ± 0.02 µM), respectively, suggesting that in some cases, rac-TEB has a higher or comparable inhibitory potential than well-known strong inhibitors of CYP450 enzymes, especially for CYP2C9 and CYP2C19. In vitro-in vivo extrapolations (IVIVE) were conducted based on the results and data available in the literature about TEB absorption and metabolism. R1 values were estimated based on the Food and Drug Administration guideline and suggested that in a chronic oral exposure scenario considering the acceptable daily intake dose proposed by the European Food and Safety Authority, the hypothesis of rac-TEB to inhibit the activities of CYP3A4/5, CYP2C9, and CYP2C19 in vivo and cause pesticide-drug interactions cannot be disregarded.


Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Pesticides/pharmacology , Triazoles/chemistry , Triazoles/pharmacology , Cytochrome P-450 Enzyme Inhibitors/chemistry , Humans , Molecular Structure , Pesticides/chemistry , Structure-Activity Relationship
14.
Eur J Drug Metab Pharmacokinet ; 46(5): 613-624, 2021 Sep.
Article En | MEDLINE | ID: mdl-34235626

BACKGROUND AND OBJECTIVES: Cytochrome P450 (CYP) 1A1 and CYP1B1 enzymes play a significant role in the pathogenesis of cancer and cardiovascular diseases (CVD) such as cardiac hypertrophy and heart failure. Previously, we have demonstrated that R- and S-enantiomers of 19-hydroxyeicosatetraenoic acid (19-HETE), an arachidonic acid endogenous metabolite, enantioselectively inhibit CYP1B1. The current study was conducted to test the possible inhibitory effect of novel synthetic analogues of R- and S-enantiomers of 19-HETE on the activity of CYP1A1, CYP1A2, and CYP1B1. METHODS: The O-dealkylation rate of 7-ethoxyresorufin (EROD) by recombinant human CYP1A1 and CYP1B1, in addition to the O-dealkylation rate of 7-methoxyresorufin (MROD) by recombinant human CYP1A2, were measured in the absence and presence of varying concentrations (0-40 nM) of the synthetic analogues of 19(R)- and 19(S)-HETE. Also, the possible inhibitory effect of both analogues on the catalytic activity of EROD and MROD, using RL-14 cells and human liver microsomes, was assessed. RESULTS: The results showed that both synthetic analogues of 19(R)- and 19(S)-HETE exhibited direct inhibitory effects on the activity of CYP1A1 and CYP1B1, while they had no significant effect on CYP1A2 activity. Nonlinear regression analysis and comparisons showed that the mode of inhibition for both analogues is noncompetitive inhibition of CYP1A1 and CYP1B1 enzymes. Also, nonlinear regression analysis and Dixon plots showed that the R- and S-analogues have KI values of 15.7 ± 4.4 and 6.1 ± 1.5 nM for CYP1A1 and 26.1 ± 2.9 and 9.1 ± 1.8 nM for CYP1B1, respectively. Moreover, both analogues were able to inhibit EROD and MROD activities in a cell-based assay and human liver microsomes. CONCLUSIONS: Therefore, the synthetic analogues of 19-HETE could be considered as a novel therapeutic approach in the treatment of cancer and CVD.


Cytochrome P-450 CYP1A1/antagonists & inhibitors , Cytochrome P-450 CYP1B1/antagonists & inhibitors , Hydroxyeicosatetraenoic Acids/pharmacology , Cell Line , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1A2/drug effects , Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 CYP1B1/metabolism , Cytochrome P-450 Enzyme Inhibitors/chemistry , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Humans , Hydroxyeicosatetraenoic Acids/chemistry , Microsomes, Liver/enzymology , Myocytes, Cardiac/enzymology , Stereoisomerism
15.
J Med Chem ; 64(13): 9321-9329, 2021 07 08.
Article En | MEDLINE | ID: mdl-34137616

The purpose of this study was to synthesize a fluorine-18 labeled, highly selective aldosterone synthase (hCYP11B2) inhibitor, [18F]AldoView, and to assess its potential for the detection of aldosterone-producing adenomas (APAs) with positron emission tomography in patients with primary hyperaldosteronism (PHA). Using dibenzothiophene sulfonium salt chemistry, [18F]AldoView was obtained in high radiochemical yield in one step from [18F]fluoride. In mice, the tracer showed a favorable pharmacokinetic profile, including rapid distribution and clearance. Imaging in the adrenal tissue from patients with PHA revealed diffuse binding patterns in the adrenal cortex, avid binding in some adenomas, and "hot spots" consistent with aldosterone-producing cell clusters. The binding pattern was in good visual agreement with the antibody staining of hCYP11B2 and distinguished areas with normal and excessive hCYP11B2 expression. Taken together, [18F]AldoView is a promising tracer for the detection of APAs in patients with PHA.


Cytochrome P-450 CYP11B2/antagonists & inhibitors , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Drug Development , Hyperaldosteronism/drug therapy , Positron-Emission Tomography , Animals , Cytochrome P-450 CYP11B2/analysis , Cytochrome P-450 CYP11B2/metabolism , Cytochrome P-450 Enzyme Inhibitors/chemical synthesis , Cytochrome P-450 Enzyme Inhibitors/chemistry , Dose-Response Relationship, Drug , Female , Fluorine Radioisotopes , Humans , Hyperaldosteronism/diagnostic imaging , Hyperaldosteronism/metabolism , Mice , Mice, Inbred BALB C , Molecular Structure , Structure-Activity Relationship
16.
Bioorg Med Chem ; 40: 116167, 2021 06 15.
Article En | MEDLINE | ID: mdl-33932713

The duocarmycins belong to a class of agent which has great potential for use in cancer therapy. Their exquisite potency means they are too toxic for systemic use, and targeted approaches are required to unlock their clinical potential. In this study, we have explored seco-OH-chloromethylindoline (CI) duocarmycin-based bioprecursors for their potential for cytochrome P450 (CYP)-mediated cancer cell kill. We report on synthetic and biological explorations of racemic seco-CI-MI, where MI is a 5-methoxy indole motif, and dehydroxylated analogues. We show up to a 10-fold bioactivation of de-OH CI-MI and a fluoro bioprecursor analogue in CYP1A1-transfected cells. Using CYP bactosomes, we also demonstrate that CYP1A2 but not CYP1B1 or CYP3A4 has propensity for potentiating these compounds, indicating preference for CYP1A bioactivation.


Antineoplastic Agents/pharmacology , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Duocarmycins/pharmacology , Indoles/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cytochrome P-450 Enzyme Inhibitors/chemical synthesis , Cytochrome P-450 Enzyme Inhibitors/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Duocarmycins/chemical synthesis , Duocarmycins/chemistry , Humans , Indoles/chemical synthesis , Indoles/chemistry , Molecular Structure , Structure-Activity Relationship
17.
ChemMedChem ; 16(18): 2786-2801, 2021 09 16.
Article En | MEDLINE | ID: mdl-34010508

CYP121 of Mycobacterium tuberculosis (Mtb) is an essential target for the development of novel potent drugs against tuberculosis (TB). Besides known antifungal azoles, further compounds of the azole class were recently identified as CYP121 inhibitors with antimycobacterial activity. Herein, we report the screening of a similarity-oriented library based on the former hit compound, the evaluation of affinity toward CYP121, and activity against M. bovis BCG. The results enabled a comprehensive SAR study, which was extended through the synthesis of promising compounds and led to the identification of favorable features for affinity and/or activity and hit compounds with 2.7-fold improved potency. Mode of action studies show that the hit compounds inhibit substrate conversion and highlighted CYP121 as the main antimycobacterial target of our compounds. Exemplified complex crystal structures of CYP121 with three inhibitors reveal a common binding site. Engaging in both hydrophobic interactions as well as hydrogen bonding to the sixth iron ligand, our compounds block a solvent channel leading to the active site heme. Additionally, we report the first CYP inhibitors that are able to reduce the intracellular replication of M. bovis BCG in macrophages, emphasizing their potential as future drug candidates against TB.


Antitubercular Agents/pharmacology , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Imidazoles/pharmacology , Mycobacterium tuberculosis/drug effects , Small Molecule Libraries/pharmacology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Cytochrome P-450 Enzyme Inhibitors/chemical synthesis , Cytochrome P-450 Enzyme Inhibitors/chemistry , Cytochrome P-450 Enzyme System , Dose-Response Relationship, Drug , Imidazoles/chemical synthesis , Imidazoles/chemistry , Microbial Sensitivity Tests , Molecular Structure , Mycobacterium tuberculosis/enzymology , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship
18.
J Tradit Chin Med ; 41(2): 284-292, 2021 04.
Article En | MEDLINE | ID: mdl-33825409

OBJECTIVE: To investigate the efficacy of Tianma (Rhizoma Gastrodiae) and Gouteng (Ramulus Uncariae Rhynchophyllae cum Uncis) on cytochrome P450 (CYP450) enzyme activities in rats. METHODS: A cocktail strategy was followed to evaluate the influence of Tianma (Rhizoma Gastrodiae) and Gouteng (Ramulus Uncariae Rhynchophyllae cum Uncis) on the activities of CYP450 isoforms (CYP1A2, CYP3A4, CYP2E1, CYP2C19, CYP2C9, CYP2D6), which were determined by changes in the pharmacokinetic parameters of six probe drugs, theophylline, dapsone, chlorzoxazone, omeprazole, tolbutamide and dextromethorphan. Study groups included, Control group (CG), Tianma (Rhizoma Gastrodiae) group (TM), Gouteng (Ramulus Uncariae Rhynchophyllae cum Uncis) group (GT) and Tianma Gouteng (Gastrodia Uncaria) group (TMGT). RESULTS: No significant differences between Tianma (Rhizoma Gastrodiae) and control groups were found. Compared with the control group, in the Gouteng (Ramulus Uncariae Rhynchophyllae cum Uncis) group both the AUC and t1/2 of dapsone and tolbutamide were reduced, whereas the CL (clearance rate) of dapsone and tolbutamide were increased. Compared with the control group, in the Tianma Gouteng group, the AUC and t1/2 of dapsone and tolbutamide were reduced, the CL of dapsone and tolbutamide were increased, and the AUC and t1/2 of chlorzoxazone were increased and the CL of chlorzoxazone was reduced. CONCLUSION: Tianma (Rhizoma Gastrodiae) has no significant effect on the six CYP450 subtypes. The activities of CYP3A4 and CYP2C9 were increased by Gouteng (Ramulus Uncariae Rhynchophyllae cum Uncis). The activities of CYP3A4 and CYP2C9 were increased, whereas the activity of CYP32E1 was reduced by combined Tianma (Rhizoma Gastrodiae) and Gouteng (Ramulus Uncariae Rhynchophyllae cum Uncis).


Cytochrome P-450 Enzyme Inhibitors/chemistry , Drugs, Chinese Herbal/chemistry , Enzyme Activators/chemistry , Orchidaceae/chemistry , Uncaria/chemistry , Animals , Cytochrome P-450 Enzyme Inhibitors/administration & dosage , Cytochrome P-450 Enzyme System/chemistry , Drugs, Chinese Herbal/administration & dosage , Enzyme Activators/administration & dosage , Isoenzymes/chemistry , Male , Rats , Rats, Wistar
19.
Chem Res Toxicol ; 34(4): 959-987, 2021 04 19.
Article En | MEDLINE | ID: mdl-33769041

Mechanism-based inactivation (MBI) refers to the metabolic bioactivation of a xenobiotic by cytochrome P450s to a highly reactive intermediate which subsequently binds to the enzyme and leads to the quasi-irreversible or irreversible inhibition. Xenobiotics, mainly drugs with specific functional units, are the major sources of MBI. Two possible consequences of MBI by medicinal compounds are drug-drug interaction and severe toxicity that are observed and highlighted by clinical experiments. Today almost all of these latent functional groups (e.g., thiophene, furan, alkylamines, etc.) are known, and their features and mechanisms of action, owing to the vast experimental and theoretical studies, are determined. In the past decade, molecular modeling techniques, mostly density functional theory, have revealed the most feasible mechanism that a drug undergoes by P450 enzymes to generate a highly reactive intermediate. In this review, we provide a comprehensive and detailed picture of computational advances toward the elucidation of the activation mechanisms of various known groups with MBI activity. To this aim, we briefly describe the computational concepts to carry out and analyze the mechanistic investigations, and then, we summarize the studies on compounds with known inhibition activity including thiophene, furan, alkylamines, terminal acetylene, etc. This study can be reference literature for both theoretical and experimental (bio)chemists in several different fields including rational drug design, the process of toxicity prevention, and the discovery of novel inhibitors and catalysts.


Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Density Functional Theory , Xenobiotics/pharmacology , Cytochrome P-450 Enzyme Inhibitors/chemistry , Humans , Molecular Structure , Xenobiotics/chemistry
20.
J Enzyme Inhib Med Chem ; 36(1): 737-748, 2021 Dec.
Article En | MEDLINE | ID: mdl-33682565

Human Cytochrome P450 2J2 (CYP2J2) as an important metabolic enzyme, plays a crucial role in metabolism of polyunsaturated fatty acids (PUFAs). Elevated levels of CYP2J2 have been associated with various types of cancer, and therefore it serves as a potential drug target. Herein, using a high-throughput screening approach based on enzymic activity of CYP2J2, we rapidly and effectively identified a novel natural inhibitor (Piperine, 9a) with IC50 value of 0.44 µM from 108 common herbal medicines. Next, a series of its derivatives were designed and synthesised based on the underlying interactions of Piperine with CYP2J2. As expected, the much stronger inhibitors 9k and 9l were developed and their inhibition activities increased about 10 folds than Piperine with the IC50 values of 40 and 50 nM, respectively. Additionally, the inhibition kinetics illustrated the competitive inhibition types of 9k and 9l towards CYP2J2, and Ki were calculated to be 0.11 and 0.074 µM, respectively. Furthermore, the detailed interaction mechanism towards CYP2J2 was explicated by docking and molecular dynamics, and our results revealed the residue Thr114 and Thr 315 of CYP2J2 were the critical sites of action, moreover the spatial distance between the carbon atom of ligand methylene and Fe atom of iron porphyrin coenzyme was the vital interaction factor towards human CYP2J2.


Alkaloids/pharmacology , Benzodioxoles/pharmacology , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Drug Development , Piperidines/pharmacology , Polyunsaturated Alkamides/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification , Benzodioxoles/chemistry , Benzodioxoles/isolation & purification , Cytochrome P-450 CYP2J2 , Cytochrome P-450 Enzyme Inhibitors/chemical synthesis , Cytochrome P-450 Enzyme Inhibitors/chemistry , Dose-Response Relationship, Drug , High-Throughput Screening Assays , Humans , Models, Molecular , Molecular Structure , Piperidines/chemistry , Piperidines/isolation & purification , Polyunsaturated Alkamides/chemistry , Polyunsaturated Alkamides/isolation & purification , Recombinant Proteins/metabolism , Structure-Activity Relationship
...